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Background: Despite the increasing availability in brain health related data, clinically

translatable methods to predict the conversion from Mild Cognitive Impairment (MCI) to

Alzheimer’s disease (AD) are still lacking. Although MCI typically precedes AD, only a

fraction of 20–40% of MCI individuals will progress to dementia within 3 years following

the initial diagnosis. As currently available and emerging therapies likely have the greatest

impact when provided at the earliest disease stage, the prompt identification of subjects

at high risk for conversion to AD is of great importance in the fight against this disease.

In this work, we propose a highly predictive machine learning algorithm, based only on

non-invasively and easily in-the-clinic collectable predictors, to identify MCI subjects at

risk for conversion to AD.

Methods: The algorithm was developed using the open dataset from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), employing a sample of 550 MCI subjects whose

diagnostic follow-up is available for at least 3 years after the baseline assessment. A

restricted set of information regarding sociodemographic and clinical characteristics,

neuropsychological test scores was used as predictors and several different supervised

machine learning algorithms were developed and ensembled in final algorithm. A site-

independent stratified train/test split protocol was used to provide an estimate of the

generalized performance of the algorithm.

Results: The final algorithm demonstrated an AUROC of 0.88, sensitivity of 77.7%, and

a specificity of 79.9% on excluded test data. The specificity of the algorithm was 40.2%

for 100% sensitivity.
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Conclusions: The algorithm we developed achieved sound and high prognostic

performance to predict AD conversion using easily clinically derived information that

makes the algorithm easy to be translated into practice. This indicates beneficial

application to improve recruitment in clinical trials and to more selectively prescribe new

and newly emerging early interventions to high AD risk patients.

Keywords: Alzheimer’s disease, clinical prediction rule, machine learning, mild cognitive impairment, personalized

medicine, precision medicine, neuropsychological tests

INTRODUCTION

Alzheimer’s Disease (AD) is a neurodegenerative disease
characterized by progressive memory loss, cognitive impairment
and general disability; AD is themost common cause of dementia
of the Alzheimer’s type. The progression of AD comprises a long,
unnoticed preclinical stage, followed by a prodromal stage of
Mild Cognitive Impairment (MCI) that leads to severe dementia
and eventually death (1). While no disease-modifying treatment
is currently available for AD, a large number of drugs are in
development and encouraging early-stage results from clinical
trials provide for the first time a concrete hope that one or
more therapies may become available in a few years (2). As
the progression of the neuropathology in AD starts years in
advance before clinical symptoms of the disease become apparent
and progressive neurodegeneration has irreversibly damaged the
brain, emerging treatments will likely have the greatest effect
when provided at the earliest disease stages. Thus, the prompt
identification of subjects at high risk for conversion to AD is of
great importance.

The ability to identify declining individuals at the prodromal
AD stage provides a critical time window for early clinical

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease

Neuroimaging Initiative; ADAS, Alzheimer’s Disease Assessment Scale; ADAS11,

Cognitive Subscale (11 items) Alzheimer’s Disease Assessment Scale; ADAS13,

Cognitive Subscale (13 items) Alzheimer’s Disease Assessment Scale; ADASQ4,

task 4 of the Cognitive Subscale (11 items) Alzheimer’s Disease Assessment

Scale; AUROC, Area Under the Receiving Operating Curve; BCa, bias-corrected

and accelerated; cAD, converters to probable Alzheimer’s disease; CDR, Clinical

Dementia Rating Scale; CDRSB, Sum of Boxes score of the Clinical Dementia

Rating Scale; CI, confidence interval; CSF, Cerebrospinal fluid; DIGIT, Digit

Span Test score; EN, Elastic Net; FAQ, Functional Activities Questionnaire; GTB,

Gradient Tree Boosting of Decision Trees; kNN, k-Nearest Neighbors algorithm;

LDT, Logic Memory subtest of the of the Wechsler Memory Scale-Revised; LR,

Logistic Regression; MLP1-Adam, Multi-Layer Perceptrons with one hidden layer

and trained with adam algorithm; MLP1-Batch, Multi-Layer Perceptrons with one

hidden layer and trained with full-batch gradient descent algorithm; MLP2-Adam,

Multi-Layer Perceptrons with two hidden layers and trained with adam algorithm;

MLP2-Batch, Multi-Layer Perceptrons with two hidden layers and trained

with full-batch gradient descent algorithm; MCI, Mild cognitive impairment;

MMSE, Mini-Mental State Examination; MRI, Magnetic resonance imaging; NB,

Naive Bayes; NC, non-converters to Alzheimer’s disease; PET, Positron emission

tomography; RAVLT, Rey Auditory Verbal Learning Test; RAVLT-F, Forgetting

score of the Rey Auditory Verbal Learning Test; RAVLT-I, Immediate score of the

Rey Auditory Verbal Learning Test; RAVLT-L, Learning score of the Rey Auditory

Verbal Learning Test; RAVLT-PF, Percent forgetting score of the Rey Auditory

Verbal Learning Test; RF, Random Forest; SVM-Linear, Support Vector Machine

with linear kernel, SVM-RBF, Support Vector Machine with radial basis function

kernel; SVM-Poly, Support Vector Machine with polynomial kernel; TMTBT,

Trail Making Test, version B.

management, treatment & care planning and design of clinical
drug trials (3). Precise identification and early treatment of at risk
subjects would stand to improve outcomes of clinical trials and
reduce healthcare costs in clinical practice. However, simulations
also suggest that the health care system is not prepared to handle
the potentially high volume of patients who would be eligible for
treatment (2).

MCI represents (currently) the earliest clinically detectable
stage of a potential ongoing progression toward AD or other
dementias. The cognitive decline in MCI is abnormal given
an individual’s age and education level, but does not interfere
with daily activities, and thus does not meet criteria for AD.
However, only 20–40% of individuals will progress to AD within
3 years, with a lower rate of conversion reported in epidemiologic
samples than in clinical ones (4, 5).

Currently, there are no means to provide patients diagnosed
with MCI with an early prognosis for conversion to AD. While
changes in several biomarkers prior to developing AD have
been reported, no single biomarker appears to adequately predict
the conversion from MCI to AD with an acceptable level of
accuracy. As such, there is increasing evidence that the use of
a combination of biomarkers can best predict the conversion to
AD (3, 6–9).

In the current age of big data and artificial intelligence
technologies, considerable effort has been dedicated in
developing machine learning algorithms that can predict
the conversion to AD in subjects with MCI. In almost all medical
fields, the introduction into research and clinical practice of
machine learning based decision-making tools, and more in
general the shift toward a personalized medicine paradigm,
is currently a debated topic and viewed as an opportunity to
improve clinical outcomes. Such objective tools may provide
individual predictions with a certain degree of confidence based
on information that can be collected about the subject, so that
researchers and clinicians may be supported by these predictions
in order to take better and more effective decisions (10).

So far, many studies focused on predicting the conversion
of AD in MCI patients using different combinations of
data including brain imaging, CSF biomarkers, genotyping,
demographic and clinical information, and cognitive
performance, achieving varying levels of accuracy [(7, 11–
19); see (20, 21)] for a recent review of the most performing
algorithms presented in the scientific literature so far). However,
while combining different biomarkers improves model accuracy,
there is a lack of consistency regarding a specific combined AD
prediction model and translation into practice is still lacking.
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One possible reason for this is that current algorithms generally
rely on expensive and/or invasive predictors, such as brain
imaging or CSF biomarkers. As such, these studies only serve the
purpose of a proof-of-concept, without being further tested in
independent and clinical samples.

The current study aimed to develop a clinically translatable
machine learning algorithm to predict the conversion to AD
in subjects with MCI within a 3-year period, based on fast,
easy, and cost-effective predictors. Specifically, we chose to
develop a variety of machine learning algorithms based on
distinct supervised machine learning techniques and subsets
of the considered predictors, followed by a weighted average
rank ensemble strategy on the predictions provided by the
various algorithms to obtain a final, more accurate prediction.
Our hypothesis was that high predictive accuracy could be
obtained using the above-mentioned approach with simple
and non-invasive predictors. We used data obtained from the
Alzheimer’s Disease Neuroimaging Initiative (http://adni.loni.
usc.edu/) with a particular consideration for socio-demographic
and clinical information, and neuropsychological test scores
rather than using complex, invasive, and expensive imaging or
CSF predictors.

MATERIALS AND METHODS

ADNI
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
AD. It contains data of a large number of cognitive normal,
MCI, and AD subjects recruited in over 50 different centers in
US and Canada with follow-up assessments performed every
6 months.

For this study, we used a subset of the ADNI dataset
called ADNIMERGE that includes a reduced selection of more
commonly used variables (i.e., demographic, clinical exam total
scores, MRI and PET variables). This subset is part of the official
dataset provided by ADNI.

Subjects
Data regarding 550 subjects with MCI and with available
diagnostic follow-up assessments for at least 3 years were
included in the study. The most relevant inclusion criteria of
ADNI studies are the following: age between 55 and 90; six
grade education or work history; subjects had to be fluent
English/Spanish speakers; Geriatric Depression Scale score
<6; good general health; no use of excluded medications
(e.g., medications with anticholinergic properties) and
stability for at least 4 weeks of other allowed medications;
Hachinski ischemic score scale ≤4. A complete description
of the ADNI study inclusion/exclusion criteria, including

the full list of excluded and permitted medications, can be
found in the ADNI General Procedure Manual, pages 20–25
(link: https://adni.loni.usc.edu/wp-content/uploads/2010/09/
ADNI_GeneralProceduresManual.pdf).

The diagnosis of MCI was performed with the following
criteria: memory complaint by subject or study partner that
is verified by a study partner; abnormal memory function
documented by scoring below the education adjusted cutoff on
the Logical Memory II subscale (Delayed Paragraph Recall) from
the Wechsler Memory Scale—Revised, which is ≤11 for 16 or
more years of education, ≤9 for 8–15 years of education, and
≤6 for 0–7 years of education; Mini-Mental State Exam (MMSE)
score between 24 and 30; Clinical Dementia Rating (CDR) score
of 0.5; Memory Box score at least of 0.5; general cognition
and functional performance sufficiently preserved such that a
diagnosis of AD cannot be made.

Subjects were classified as converters to probable AD
(cAD; n = 197, 35.82%) if they satisfied the National
Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association
criteria for AD [28] during at least one of the follow-
up assessments occurred within 3 years from the baseline
investigation, as well as having a MMSE score between 20 and
2. Otherwise, they were classified as non-converters to AD (NC;
n= 353, 64.18%).

The study procedures were approved by the institutional
review boards of all participating centers to the Alzheimer’s
Disease Neuroimaging Initiative, and written informed
consent was obtained from all participants or their
authorized representatives.

Feature Extraction
Considering our aim to employ only predictors that are either
already routinely assessed or easily introducible in clinical
practice, and that are not perceived as invasive by patients, we
decided to take into account only variables in the ADNIMERGE
dataset that regards diagnostic subtypes, sociodemographic
characteristics, clinical and neuropsychological test scores. Some
of these variables were not available for all recruited subjects and
it was a priori decided to remove variables with >20% missing
values. Only the Digit Span Test score (DIGIT) exceeded the cut-
off (52.73%) and was not used in our analysis. The following
variables were used:

• Sociodemographic characteristics: sex, age (in years), years
of education, and marital status (never married, married,
divorced, widowed, unknown).

• Subtypes of MCI: Early or LateMCI according to their score in
the Logic Memory subscale of the Wechsler Memory Scale—
Revised (22), adjusted for the years of education. 9–11 Early
MCI and ≤8 Late MCI for 16 or more years of education; 5–9
Early MCI and ≤4 Late MCI for 8–15 years of education; 3–6
Early MCI and ≤2 Late MCI for 0–7 years of education.

• Clinical scales: CDR (23) was used to characterize six domains
of cognitive and functional performance in AD and related
dementias: Memory, Orientation, Judgment & Problem
Solving, Community Affairs, Home & Hobbies, and Personal
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Care. The rating is obtained through a semi-structured
interview of the patient together with other informants (e.g.,
family members). Sum of Boxes score was used in the current
analyses (CDRSB). The score of the Functional Assessment
Questionnaire (FAQ) (24), an a informant-based clinician-
administered questionnaire which assess the functional
daily-living impairment in dementia, was also used in
the analyses.

• Neuropsychological tests: MMSE (25) is a 30-point
questionnaire that is used measuring cognitive impairment.
All MCI subjects has a score of 24 of more at baseline. The
Cognitive Subscale Alzheimer’s Disease Assessment Scale
(ADAS) (26) is made of 11 tasks that include both subject-
completed tests and observer-based assessments, assessing the
memory, language, and praxis domains. The result is a global
final score ranging from 0 to 70, based on the sum of the scores
of the single tasks (ADAS11). Beyond the ADAS11 score, the
ADNI study included also an additional test of delayed word
recall and a number cancellation or maze task, which are
further summed to have a new total score that ranges from 0
to 85 (ADAS13). In addition, the score of the task 4 (Word
Recognition, ADASQ4) was included in the ADNIMERGE
dataset. All these three ADAS scores were initially considered
as predictors in the analyses. The Rey Auditory Verbal
Learning Test (RAVLT) (27) is a cognitive test used to
evaluate verbal learning and memory. All the immediate
(RAVLT-I), learning (RAVLT-L), forgetting (RAVLT-F), and
percent forgetting (RAVLT-PF) scores were included in the
ADNIMERGE dataset and used in the analyses. Moreover, the
total delayed recall score of the Logic Memory subtest of the of
the Wechsler Memory Scale-Revised (28) (LDT), which assess
verbal memory, and the time to complete of the Trial Making
Test version B (TMTBT) (29), which assess visual-motor
coordination and attentive functions. A summary of the
abbreviations of all neuropsychological tests can be found
in Table 1.

TABLE 1 | Abbreviations of neuropsychological tests.

ADAS11 Cognitive Subscale (11 items) Alzheimer’s Disease Assessment

Scale

ADAS13 Cognitive Subscale (13 items) Alzheimer’s Disease Assessment

Scale

ADASQ4 Task 4 of the Cognitive Subscale (11 items) Alzheimer’s Disease

Assessment Scale

CDRSB Sum of Boxes score of the Clinical Dementia Rating Scale

DIGIT Digit Span Test score

FAQ Functional Activities Questionnaire

LDT Logic Memory subtest of the of the Wechsler Memory

Scale-Revised

RAVLT Rey Auditory Verbal Learning Test

RAVLT-F Forgetting score of the Rey Auditory Verbal Learning Test

RAVLT-I Immediate score of the Rey Auditory Verbal Learning Test

RAVLT-L Learning score of the Rey Auditory Verbal Learning Test

RAVLT-PF Percent forgetting score of the Rey Auditory Verbal Learning Test

TMTBT Trial Making Test, version B

Taken together, 14 continuous, 2 dichotomous and 1 polytomous
categorical features were initially considered. The full list is
available in Table 2.

Dataset Division in 5 Site-Independent,
Stratified Test Subsets
The entire dataset was divided in five mutually exclusive data
subsets. These five subsets were created in order to satisfy
the following criteria: every subset has to include roughly
20% of the cases; all subjects from each of the 58 different
recruitment sites has to be allocated into the same subset;
every subset has to include roughly the same percentage of
cAD as observed in the entire dataset (35.82%). In order to
accomplish a division in 5 folds which satisfies all these criteria,
10,000 different subsets were generated by progressively adding
all subjects from a randomly chosen recruiting site, until the
included cases ranged between 19 and 21% of the entire sample.
Then, only those subsets whose percentage of cAD ranged
between 35.52 and 36.12% were retained, which was satisfied in
567 (5,67%) out of the generated subsets. Finally, all possible
combinations of five of the retained subsets were created in
order to identify whether in any of these combinations covered
the entire dataset without any repetition of cases. The entire
process took around 4 h of computation (on a Linux server with
2.20GHz Intel Xeon E5-2650 v4 CPUs), and successfully found
a single combination of five subsets that satisfied all the desired
criteria (Table 3).

All the missing value imputation, feature transformation and
selection procedures, model training with cross-validation, and
ensembling of different algorithms predictions described in the
following paragraphs were performed in five distinct repetitions
(named A-E) of the analyses, each time using the cases included
in four of the five subsets and blindly to the remaining subset that
were used as a test subset. The same missing value imputation,
feature transformation and selection applied during training
in the other four subsets were applied to the test subset. The
predictive algorithms and their ensembling procedure developed
in the other 4 subsets were tested against the test subset to obtain
an estimate of the generalized performance in an independent
sample of cases recruited in sites different from the ones used
for training1.

1Our approach based on a division in 5 site-independent test subsets and a 10-fold

cross-validation applied within each of them actually mimics the popular nested

cross-validation approach, which is based on the nesting of an inner (in our case,

the 10-fold cross-validation) and outer cross-validation loops (in our case, the site-

independent test subsets). However, even if identical in its structure, in our study

we did not compare the outer loop performances obtained re-applying nested

cross-validation to different competing strategies (i.e. different machine learning

techniques or ensembling approaches) in order to identify the best algorithmic

approach, which is the primary reason for which any type of (cross-)validation

strategy is employed. Instead, we a-priori chose to use all of the 52 models we

developed and to ensemble them with the average weighted ranks strategy. Thus,

differently from what is done with nested cross-validation, the performance we

observed in the outer loop was not used to take any choice about the development

of the algorithm but only to provide a final estimate of the performance of

our algorithm. For this reason, such final performance estimate can be safely

considered a test instead of a validation of the performance of our algorithm,

making the use of the term nested cross-validation not entirely appropriate and

potentially misleading.
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TABLE 2 | Descriptive statistics.

Continuous predictors Non-converters Converters Missing values

Mean S.D. Mean S.D. N %

Age 72.42 7.54 74.19 6.88 / /

Years of education 16.18 2.74 15.74 2.83 / /

CDRSB 1.26 0.70 1.95 1.01 / /

ADAS11 8.67 3.78 12.94 4.26 1 0.18

ADAS13 13.89 5.81 21.05 5.72 3 0.55

ADASQ4 4.61 2.35 7.16 2.04 / /

MMSE 28.01 1.71 26.85 1.72 / /

RAVLT-I 37.84 10.47 28.05 6.74 / /

RAVLT-L 4.76 2.59 2.90 2.11 / /

RAVLT-F 4.37 2.46 5.20 2.30 / /

RAVLT-PF 51.09 30.92 78.20 28.04 / /

LDT 6.84 3.12 3.59 2.89 / /

DIGIT 40.24 10.42 34.86 11.02 290 52.73

TMTBT 100.30 49.56 141.24 79.66 4 0.73

FAQ 1.76 2.75 5.81 5.00 4 0.73

Categorical predictors Non-converters Converters Missing values

N % N % N %

Sex Male 220 62.32 118 59.90 / /

Female 133 37.68 79 40.10

Subtype of MCI Early 196 47.88 22 11.17 / /

Late 184 52.12 175 88.83

Marital status Never married 6 1.70 3 1.52 3 0.55

Married 267 75.64 161 81.73

Divorced 35 9.92 13 6.60

Widowed 42 11.90 20 10.15

S.D, Standard Deviation; N, numbers of subjects.

Feature Transformation and Selection
Imputation was performed for variables with missing values
using the median for continuous features and using the mode
for categorical features. Continuous variables were standardized
(mean = 0, standard deviation = 1) and non-dichotomous
categorical variables were dichotomized using one-hot encoding,
i.e., re-coding them in a new dichotomous variable for each class
of the categorical variable, with 1 indicating the occurrence of
that class and 0 the occurrence of any other class of the variable.

In case groups of variables resulted highly correlated (pairwise
r >= 0.75), principal component analysis was used to calculate
principal components and the original variables were substituted
with all the components with eigenvalues >= 1.

All features were initially used during training (feature set 1).

Moreover, three feature subsets were additionally created based
on different selection strategies in order to include only those that
are the most informative. A filtering procedure was applied to
create reduced sets of features based on their bivariate statistical
association (p < 0.05) with the outcome using independent
sample t-test for continuous predictors and Fisher’s exact
test for both dichotomous and one-hot encoded polytomous
features (feature subset 2). Two cross-validated recursive feature

elimination procedures (also known as “wrapper” procedures)
with Logistic Regression (LR, feature subset 3) and Random
Forest (RF, feature subset 4) (30) were also applied. In particular,
the latter strategy was chosen because it has previously proved to
be efficacious in selecting a relevant feature subset (20).

Machine Learning Techniques
Several machine learning procedures that can be used to solve
classification problems exists. We used 13 supervised techniques:
LR, Naive Bayes (NB) (31), L1 and L2 regularized logistic
regression or Elastic Net (EN) (32), Support Vector Machine (33)
with linear (SVM-Linear), radial basis function (SVM-RBF), and
polynomial (SVM-Poly) kernels with Platt scaling (34), k-Nearest
Neighbors algorithm (kNN) (35), Multi-Layer Perceptrons with
either one or two hidden layers and trained with either a full-
batch gradient descent or adam (36) algorithms (MLP1-Batch,
MLP2-Batch, MLP1-Adam, MLP2-Adam), RF, and Gradient
Tree Boosting of Decision Trees (GTB) (37). All analyses were
parallelized on a Linux server equipped with four 12-core Intel
Xeon CPUE5-2650 v4@ 2.20GHz and were performed in Python
3.6 (38), using the implementation of the machine learning
techniques available in the Scikit-Learn library (39).
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Hyper-Parameter Optimization
Machine learning techniques usually have one or more hyper-
parameters that allow a different tuning of the algorithm during
the training process. Different values of these hyper-parameters
lead to algorithms with different predictive performances with
the goal of obtaining the best possible performance when applied
to cases that are not part of the training set. In order to
optimize such hyper-parameters for each ML techniques used
in this study, each model was trained with 50 random hyper-
parameter configurations, and 50 further configurations were
progressively estimated with a Bayesian optimization approach.
Instead of a random generation, Bayesian optimization aims
to estimate which is the hyper-parameter configuration that
would maximize the performance of the algorithm starting from
the previously attempted ones, based on the assumption that
it exists a relationship between the various hyper-parameter
values and the performance achieved by the algorithm. Bayesian
optimization is expected of being able to identify better hyper-
parameter configurations, and in a reduced number of attempts,
than just trying to generate them at random. Estimation was
performed with Gaussian Processes, as implemented in the
Scikit-Optimized library (https://scikit-optimize.github.io/).

The Area Under the Receiving Operating Curve (AUROC)
was used as performance metric to be maximized. All the
ML algorithms developed in this study output a continuous
prediction score (range: 0–1; the closer to 1 the higher the
predicted risk of conversion for that subject) and the AUROC
value can be interpreted as the probability that a randomly
selected cAD subject will receive a higher output score than
a randomly selected NC subject. The AUROC value is 0.5
when the algorithm makes random predictions and 1 in
case it is always correct in making predictions. AUROC is
not affected by class imbalance and it is independent with
respect to any specific threshold that is applied to perform a
dichotomous prediction.

Cross-Validation Procedure
The aim is to develop an algorithm that can achieve the best
possible generalized performance and not to perform well only
with the cases used in the training process. Cross-validation
provides an estimate of such generalized performance for every
hyper-parameter configuration. In cross-validation, the train
sample is divided in several folds of cases that are held-out from
the training process, with training iteratively performed with
the remaining cases. After the training, the algorithm is finally
applied on the held-out cases.

We applied the commonly used 10-fold cross-validation
procedure, repeated 10 times to obtain a stable performance
estimate. The fold creation was performed at random, stratifying
(i.e. balancing) for the percentage of converters and non-
converters in each fold. Finally, the 100 performance estimates of
the algorithm available for each hyper-parameter configuration
were averaged to provide a final point estimate of the generalized
performance. The hyper-parameter configuration for each
machine learning technique that demonstrated the best average
cross-validated AUROC was retained.
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Weighted Rank Average of Single
Algorithm Predictions
Using a collection of algorithms and combining their predictions
instead of considering only the prediction coming from a single
algorithm generally improves the overall predictive performance
(40). This procedure is called ensembling and it is also the
principles on which some individual techniques such as Random
Forest and Gradient Boosting techniques are based.

Several different ensemble methods exist, which usually
require a further independent data subset from both the training
and test ones. This additional subset would be used to train how
to optimally combine the various predictions generated by the
single algorithms. Given the limited amount of data available
in the current study, further reducing the size of the train
sample may have undermined the predictive performance of the
developed algorithms. Thus, we decided to apply a simple form of
ensembling based on a weighted average of the rank predictions
generated by all individual algorithms. This strategy is usually
considered effective even though it does not require to develop
any further machine learning meta-algorithm and to optimize its
hyperparameters (41).

First, the ranks of the cross-validated continuous prediction
scores of the train subset cases were calculated for each of the 52
developed algorithms, and rescaled in order to range between 0
and 1. Then, the arithmetic average of the rescaled ranks weighted
for the cross-validated AUROC was calculated for each train
subset case, representing the new continuous prediction scores
for the train subset cases.

To generate the final continuous prediction scores of the test
subset cases, at first 52 prediction scores for each test case were
generated using all the 52 used algorithms. Then, the prediction
score of each algorithm was substituted with the rescaled rank
of the closest cross-validated train subset prediction score of that
algorithm. Finally, the average of the rescaled ranks weighted for
the cross-validated AUROC was calculated. This represents the
final continuous prediction scores of each test subset cases.

Testing Performance
The final continuous prediction scores of the five test subsets,
which were obtained using the weighted rank average, were
pooled and used to calculate the whole sample test AUROC. This
represents the final estimate of the generalized site-independent
AUROC that the algorithm is expected to achieve when it is
applied to new cases. The 95% confidence interval (CI) of the
AUROC was calculated with a stratified bootstrap procedure,
with 10,000 resamples and applying the bias-corrected and
accelerated (BCa) approach (42).

Different categorical cAD/NC predictions were generated for
each case applying various thresholds to the final continuous
prediction scores (i.e., a score equal or above the threshold
indicated a cAD, otherwise a NC). First, the threshold values
that maximized the balanced accuracy (i.e., the average between
sensitivity and specificity) of the cross-validated train subsample
ensemble predictions in each of the five analyses replication
was identified and averaged in order to have a final unique
threshold that was applied to the final continuous prediction

scores. Moreover, the threshold values that generated sensitivity
of 100, 97.5, 95, 90, 85, 80, 75% of the cross-validated train
subsample ensemble predictions in each of the five analyses
replication was identified, averaged and applied to the final
continuous prediction scores.

Specificity (i.e., recall), sensitivity, positive predictive value
(i.e., precision), negative predictive value, balanced accuracy
and F1 score (i.e., the harmonic average of the sensitivity and
positive predictive value) were calculated considering the pooled
categorical predictions generated with the abovementioned
thresholds, which represent the estimates of the generalized
site-independent performance of the algorithm when applied to
perform categorical predictions of cAD/NC in new cases, such
that either the balanced-accuracy is aimed to be maximized or
defined levels of sensitivity are aimed to be obtained.

Feature Importance
To provide a general ranking of the importance of the predictors
used in this study, we applied the same five train/test split
protocol to iteratively develop logistic regression models using
only a single feature, in the train subsets, and these models were
applied to generate the continuous prediction scores in the five
test subsamples. The scores of the test subsamples were finally
pooled together and used to calculate the whole sample test
AUROC for each predictor. This gives a metric of importance
for each predictor that is independent from both the machine
learning technique used and all other predictors inserted in
the algorithm. The 95% confidence interval (CI) of also these
AUROCs was calculated with a stratified bootstrap procedure,
with 10,000 resamples and applying the bias-corrected and
accelerated (BCa) approach (42).

RESULTS

Descriptive statistics of each feature in the cAD and NC groups
are reported in Table 2. Statistics of continuous features are
reported before the standardization was applied.

Feature Transformation and Selection
Two groups of features correlated above the 0.75 threshold
were identified, respectively the three ADAS scores (ADAS11,
ADAS13, ADASQ4) and two of the RAVLT scores (RAVLT-F,
RAVLT-PF). Such evidence equally resulted in all of the five
training subsets. In all of the 5 subsets, only the first principal
component of each group had an eigenvalue >= 1, and these
were used to substitute the correlated features as predictors
(ADAS-PC1, RAVLT-F-PC1).

Across the five training subsamples used in the analyses, each
feature selection procedure selected only partially overlapping
subsets of relevant features, as reported in Table 4. Thus, the
feature sets 2, 3, and 4 used in the analyses were in part different
across the training subsamples used in the five repetitions of the
analyses. This evidence further justifies our choice of creating
several site-independent train and test subsamples instead of
just a single training and test split, in order to provide a better
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TABLE 4 | Feature sets 2, 3, and 4 in each of the five replications of the analyses.

Predictors Feature set 2 Feature set 3 Feature set 4

A B C D E A B C D E A B C D E

Age x x x x x x x x x

Years of education x x x x

CDRSB x x x x x x x x x x x x x x x

ADAS-PC1 x x x x x x x x x x x x x x x

MMSE x x x x x x x x x x x

RAVLT-I x x x x x x x x x x x x x x x

RAVLT-L x x x x x x x x x x x x

RAVLT-F-PC1 x x x x x x x x x x x x x x x

LDT x x x x x x x x x x x x x

TMTBT x x x x x x x x x x x x x x x

FAQ x x x x x x x x x x x x x x x

Sex x x x x x x x x x

Subtype of MCI x x x x x x x x x x x x x x

Marital status—Never married x x x x x

Marital status—Married x x x x x x x

Marital status—Divorced x x x x x x x

Marital status—Widowed x x x x x x x

A-E indicates the 5 independent subsets in which the analyses have been replicated.

and more stable estimate of the generalized performance of
the algorithm.

Among the features, CDRSB, ADAS-PC1, RAVLT-I, RAVLT-
F-PC1, TMTBT, and FAQ, were selected by all the three feature
selection strategies in all of the five repetitions of the analyses,
the subtype of MCI was discarded only once, LDT twice, RAVLT-
L three times and MMSE four times. All the sociodemographic
characteristics were all discarded at least 6 up to 11 times out of
the 15 feature sets identified in the analyses.

Performance of the Predictive Algorithm
The cross-validated AUROC results for each of the 52 models
developed in each repetitions are reported in Table S1, which
ranged from a minimum value of 0.83 to a maximum value of
0.90 for the models developed with feature set 1, from 0.84 to 0.90
for the models developed with feature set 2, from 0.84 to 0.89 for
the models developed with feature set 3, and from 0.83 to 0.90 for
the models developed with feature set 4. These results indicate
a narrow difference of performance among different feature
sets, as well as among different replications and techniques,
which included simple linear models such LR and NB as well as
ensembling technique such as RF and GBM. The cross-validated
AUROC of the weighted rank average ensembling strategy in
each fold is also reported in Table S1, which ranged from a
minimum of 0.86 to a maximum of 0.89.

When the test continuous prediction scores obtained with
the ensembling approach were pooled, the whole sample test
AUROC resulted 0.88 (95% bootstrap CI 0.85–0.91), which is
plotted in Figure 1.

Considering the categorical predictions generated with the
threshold that maximized the training balanced accuracy, results

FIGURE 1 | Area under the receiving operating curve of the pooled test

predictions.

indicated a sensitivity/recall of 77.7%, a specificity of 79.9%, a
positive predictive value/precision of 68.3%, a negative predictive
value of 86.5%, a balanced accuracy of 0.79, and F1-score of 0.73.
Results generated applying the other thresholds are reported in
Table 5.

All these results provide an estimate of the generalized
performance of the algorithm when applied in new subjects
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TABLE 5 | Test performance of the algorithm.

Aimed sensitivity level Sensitivity

(Actual) (%)

Specificity (%) Positive predictive

value (%)

Negative predictive

value (%)

Balanced

accuracy

F1-score

Sensitivity of 1 100 40.2 48.3 100.0 0.701 0.651

Sensitivity of 0.975 97.5 49.6 51.9 97.2 0.735 0.677

Sensitivity of 0.95 94.9 53.0 53.0 94.9 0.739 0.680

Sensitivity of 0.90 88.8 67.4 60.3 91.5 0.781 0.719

Sensitivity of 0.85 84.3 73.1 63.6 89.3 0.787 0.725

Sensitivity of 0.80 79.2 79.6 68.4 87.3 0.794 0.734

Sensitivity of 0.75 71.6 84.1 71.6 84.1 0.779 0.716

Best balanced accuracy 77.7 79.9 68.3 86.5 0.788 0.727

AUC, Area Under the Receiving Operating Curve.

TABLE 6 | Individual test pooled AUROC of each feature.

AUROC 95% Boostrap CI

ADAS-PC1 0.809 0.772 0.842

RAVLT-I 0.777 0.737 0.814

FAQ 0.777 0.733 0.816

LDT 0.770 0.726 0.808

RAVLT-L 0.707 0.661 0.750

CDRSB 0.697 0.648 0.740

RAVLT-F-PC1 0.685 0.639 0.730

MMSE 0.678 0.631 0.723

Subtype of MCI 0.658 0.610 0.702

TMTBT 0.658 0.608 0.704

Age 0.564 0.511 0.614

Years of education 0.540 0.494 0.590

Marital status—Married 0.506 0.452 0.547

Marital status—Divorced 0.501 0.449 0.543

Marital status—Never married 0.488 0.439 0.537

Marital status—Widowed 0.487 0.430 0.529

Sex 0.475 0.413 0.512

which were not included in the sample used to develop the model
and that have been evaluated in distinct recruiting sites.

On the server we employed in our study, training took around
12 h for each of the 5 test folds, with a total training time of
2 days and a half. Instead, the computational time necessary to
calculate the prediction using the ensemble of machine learning
algorithms is <1 s for each case in each fold.

Importance of Predictors
The AUROC of each of the various features obtained by pooling
the results in the five test subsamples is reported in Table 6,
ranked from the highest to the lowest AUROC, and in Figure 2,
subdivided based on type of the features (i.e., sociodemographic,
subtype of MCI, clinical, and neuropsychological tests). These
represent an estimate of the generalized predictive performance
achievable using each feature singularly.

Sociodemographic characteristics resulted the least relevant,
with age being the sole with a statistically significant AUROC

(lower bound of the 95% bootstrap CI higher than 0.50) even
if quite small in magnitude (AUROCage = 0.57). Instead, both
subtypes of MCI and CDRSB demonstrated a better predictive
performance (AUROCMCI = 0.66; AUROCCDRSB = 0.70), and
FAQ a high AUROC of 0.78. Among the neuropsychological
test scores, some of them also proved to have a high predictive
capability even when used as individual predictors. The ADAS-
PC1 achieved an AUROC of 0.81, RAVLT-I of 0.78, and LDT
of 0.77. All other neuropsychological test scores resulted with an
inferior AUROC (minimum AUROC: AUROCTMTBT = 0.66).

Of notice, themost relevant of the predictors, e.g., ADAS-PC1,
resulted having a significantly lower test AUROC than the one
demonstrated by the algorithm we developed (higher bound of
the 95% bootstrap CI of ADAS-PC1= 0.84 < lower bound of the
95% bootstrap CI of the algorithm= 0.85).

DISCUSSION

The aim of the current study was to develop a new machine-
learning algorithm to allow a 3-year prediction for conversion to
AD in subjects diagnosed with MCI.

Considering an imminent necessity of being able to
discriminate which MCI subjects will progress to AD from those
who will not, as soon as in a few years the first effective treatments
will be probably available (2), our algorithm has been designed
to be used as a prognosis support tool for MCI patients, which
is cost-effective and easily translatable to clinical practice. This
would allow timely planning of early interventions for such
individuals. Further, our algorithm can be employed as a tool
during the recruitment of MCI subjects for clinical trials which
aim to investigate innovative treatments of AD. The opportunity
to recruit only subjects at true risk of future conversion to AD—
who most likely show the earliest brain changes underlying AD
pathology—will drastically reduce the costs to run such clinical
trials and result in improved outcomes.

In contrast with many of the machine-learning approaches
that have been previously presented, our algorithm aimed to
achieve good predictive performance based only on a reduced
set of sociodemographic characteristics, clinical information,
and neuropsychological tests scores. It does not rely on
information coming from procedures that are currently still
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FIGURE 2 | Area under the receiving operating curve of individual predictors. The figure indicates the pooled test AUROC and its 95% bootstrap CI when prediction is

made considering each predictor singularly. Predictors are grouped according to conceptual domains, which in descending order are sociodemographic

characteristics, subtype of MCI, clinical scale scores, and neuropsychological test scores. Non-significant AUCROC (i.e., the lower bound of the CI is lower than or

equal to 0.5) are in gray, significant ones in black.

expensive, invasive or not widespread available in many clinical
settings, such as neuroimaging techniques, lumbar puncture, and
genetic testing.

The algorithm was developed using a sample of MCI subjects
recruited in the ADNI study and we applied a site-independent
testing protocol in order to obtain results which represent a better
estimate of the expected performance when the algorithm is
applied in distinct clinical centers. To the best of our knowledge,
this is the first algorithm that was tested ensuring independence
between the train and test sets regarding the sites where the
subjects were recruited from.

Even using such a rigid testing protocol, the algorithm
demonstrated a high predictive performance, showing a test
AUROC of 0.88, a sensitivity of 77.7%, and a specificity of 79.9%
when the classification threshold was optimized to achieve the
best possible balanced accuracy. Of particular interest is the
achievement of 40.2%/53% specificity and 48.3%/53% positive
predictive value when the threshold was further optimized
to achieve a sensitivity of respectively, 100 and 95%. These
results support the utility of our algorithm especially as a
potential screening tool, i.e., an algorithm that can provide
a marginal number of false negative predictions at the cost
of a higher number of false positives. Thus, our algorithm
would turn out to be particularly useful in case another more
accurate, and especially more sensitive tool will become available,
however which requires additional expensive or invasive-to-
collect information. In such case, our algorithm can be used
as a first step to significantly reduce the number of subjects

which require examination using more precise, yet less easily
applicable procedures at a later stage. Considering an expected
conversion rate of 20–40% from MCI to AD in 3 years, the
expected percentage of subjects confidently predicted as non-
converters would be estimated 32–24% subsequently, leaving
only the remaining 68–76% of subjects with the necessity of
further investigations.

Making a proper comparison of our algorithm with all others
previously published is not a trivial task, especially considering
the different and reduced level of independent validation most of
these algorithms have undergone so far.

In some studies, algorithms which used as predictive
information some type of functional brain imaging, such as PET
and fMRI, and/or CSF investigations demonstrated particularly
high cross-validated performance, with AUROCs close to 0.95
(18, 19). A recent study presented an algorithm based on
regional information from a single amyloid PET scan which
demonstrated a test performance of an AUROC of 0.91 and an
unbalanced accuracy of 0.84 in the ADNI sample for a prediction
of conversion in 2 years (43), thus showing a higher predictive
performance than what was achieved by our algorithm.

In addition, some studies which used only structural MRI
also demonstrated high cross-validated [i.e., (18, 19): AUROC
= 0.932; balanced accuracy = 0.886] and nested cross-
validated performance [(44): sensitivity = 85%; specificity =

84.78%]. Similarly, high cross-validated results were found by
other studies who combined structural MRI with clinical and
neuropsychological information [i.e., (7, 11–19)]: AUROC =
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0.902; balanced accuracy = 80.5%) In addition, a recent study
(45) presented a highly performing deep learning algorithm
(AUROC = 0.925; accuracy = 86%; sensitivity = 87.5%;
specificity = 85%) and, to the best of our knowledge, this is
the only available study using structural MRI in which a proper
testing of the algorithm was performed.

Some particularly promising cross-validated results were also
found in some studies which considered also APOE genotyping,
together with EEG, [(46): AUROC = 0.97; sensitivity = 96.7%;
specificity = 86%] or blood biomarkers (7, 11, 17): balanced
accuracy = 92.5%). Thus, the use of brain imaging, CSF,
and/or other biomarkers as predictive information may have,
to some degree, resulted in a better predictive performance
compared to our algorithm, which did not use any of these types
of information.

While the results of the previous studies indicate that
neuroimaging biomarkers hold great promise for predicting
conversion to AD, the performance increase gained by
including biomarker information is questioned and much
debated (15, 47, 48). Instead, neuropsychological measures of
cognitive functioning are possibly equally excellent predictors
of progression to dementia. For example, in a study by Fleisher
and colleagues, common cognitive tests provide better predictive
accuracy than imaging measures for predicting progression
to AD in subject with moderate stages of amnestic MCI
(48), and in another study by Clark and colleagues, models
developed using only socio-demographic information, clinical
information and neuropsychological test scores (focusing on
verbal fluency scores) resulted in an AUROC score of 0.87 and
a balanced accuracy of 0.84, while including brain imaging did
not significantly improve this performance (AUROC = 0.81,
accuracy= 0.83) (15).

Moreover, the cost of the standard procedure in the clinical
process of diagnosing AD (which entails the clinical consultation,
including the patient’s administrative admission, anamnesis,
physical examination, neuropsychological testing, test evaluation
and diagnosis conference & physician letter) is relatively low at an
estimated 110e (US$115) on average, while the use of additional
advanced technical procedures, such as blood sampling, CT,MRI,
PET & CSF procedures, which are required following deficits
in neuropsychological test results and depends on the patient’s
suspected diagnosis of MCI, AD or other dementia types (which
is increasingly associated with higher frequencies of using cost-
intensive imaging & CSF procedures), drives costs up to 649 e
(US$676) in case of an AD diagnosis according to a study in a
German memory clinic (49).

In this regards, the use of advanced technological procedures,
rather than clinical consultation and neuropsychological testing,
is driving costs in the diagnostic process and as such, will also
increase the costs of predictive algorithms based on information
of imaging, blood sampling or CSF procedures compared to
those algorithms that rely only on sociodemographic, clinical,
and neuropsychological predictive information, like the one we
present in this study. In addition, even if nowadays some forms
of neuroimaging investigations are often routinely performed,
for example in order to evaluate other potential comorbidities
such as neurovascular problems or regional atrophies, and thus

such information may result already available without additional
costs, a clear evidence of its relevance to improve predictions
based only on neuropsychological and clinical measures is still
lacking, as it has already been discussed above, and still requires
further investigations.

Additionally, our algorithm demonstrated similar
predictive performance compared to other top-performing
algorithms based only on sociodemographic, clinical, and
neuropsychological predictive information. For example, in a
first study by Clark and colleagues, they used only a simple
cross-validation protocol to investigate the performance of
their algorithm to make prediction of conversion at 1 year
or more (AUROC = 0.88, balanced accuracy = 0.84) (14),
while in another study they used a more sound nested cross-
validation protocol to investigate the predictive performance
of their algorithm at 4 years (AUROC = 0.87, balanced
accuracy= 0.79) (15).

Our results originate from a proper testing protocol
and represent a better unbiased estimate of the generalized
performance of the algorithm. Only a very small number of
machine learning algorithms for the prediction of conversion
from MCI to AD were subjected to a proper testing protocol,
rather than only a cross-validation protocol, which limits the
soundness of the evidence of their predictive performance.
As such, apart from (43, 45), all the previously mentioned
results may be optimistically biased estimates of the generalized
performance of such algorithms as a proper testing protocol was
not applied.

We previously presented another machine learning algorithm
that performs a prediction of conversion to AD in MCI subjects
(20, 21). However, the algorithm described here has distinct
characteristics and can be considered at a more advanced stage
of validation. First, the current algorithm does not require any
neuroimaging information, while our previous method relied
on a clinicians’ rating of the atrophy in three brain structures,
evaluated by observing standardized images coming from a
structural magnetic resonance. Structural magnetic resonance is
widespread also in clinical settings nowadays, it is less expensive
than other neuroimaging evaluation such as functional magnetic
resonance and positron emission tomography, and the use of a
clinician-administered visual scale allows to bypass the obstacles
related to the non-automatic calibration of data coming from
different magnetic resonance scanners. Nevertheless, the fact that
our new algorithm does not necessitate any magnetic resonance
evaluation makes its use even more easily translatable in practice,
and less expensive. Moreover, even though our former algorithm
showed higher cross-validated performance [AUROC = 0.91,
sensitivity = 86.7% and specificity = 87.4% at the best balanced
accuracy) (20)], a solid testing of its performance is still lacking
and, at the moment, only a preliminary evidence via a transfer
learning approach is available (21). Instead, the protocol applied
in the current study provides a better and sounder evaluation of
the actual predictive performance of this new algorithm.

Beyond testing the algorithm’s predictive accuracy, we also
aimed to provide a first indication of the importance of the
variables used as predictors. The opportunity to provide an
explanation of how the model works and performs its prediction
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is crucial to foster its application in clinical practice (10).
However, given the architectural complexity of the algorithm we
developed, this is not a straightforward task. Several different
approaches have been proposed, all of them providing different,
and only a partial explanation of an algorithm’s functioning
(50). Thus, we decided to leave complex and more extensive
investigations to a future study which will be fully dedicated
to this goal. Instead, we simply investigated the predictive role
of each predictor individually, which can evidence the amount
of predictive information carried by each predictor. However, it
does not allow to identify potential interactions among multiple
predictors that could have been modeled by the algorithm and
that can relevantly contribute to its high predictive performance.

In line with the evidence in our previous study (20),
sociodemographic characteristics seem not to be particularly
relevant in discriminating cAD and NC MCI subjects.
Furthermore, in both studies, age was the sole of these
characteristics showing a significant, even if very limited,
predictive power. Also, sociodemographic characteristics
resulted to be the most often discarded features by the feature
selection strategies we applied in our study, once again suggesting
their poor predictive relevance.

Instead, the clinical scale scores, the subtype of MCI, and
the neuropsychological test scores resulted markedly predictive.
Their test AUROC ranged from 0.658 to 0.809, and even
the least predictive of them had a 95% CI higher than 0.6.
The evidence of their predictive importance was expected.
These features measure core elements of the progressive decline
leading to a full manifestation of AD, such as the memory
and other cognitive functions deterioration, and the consequent
functional impairment.

In our algorithm, as well as in several previously presented
algorithms which included clinical, and neuropsychological
predictors, some of these were also reassessed at later follow-
ups in order to investigate when a conversion to AD occurred
after the baseline assessment. As a matter of facts, MMSE and
CDR scores below certain cut-offs and a cognitive impairment
in at least two cognitive domains are necessary criteria to
receive a diagnosis of probable AD, evidencing a conversion
from MCI to AD. Using some measures at baseline to predict
the same or related measures at a future follow-up time
is a strategy at the foundation of time-series analyses (i.e.,
autoregressive models). The same measure may result correlated
to itself at different future times (i.e., autocorrelation), thus
making relevant predictive information at the disposal of the
predictive model. Instead, in other occasions, a measure may
result uncorrelated to itself across different times of assessment.
The result of a significant individual predictive performance of
all neuropsychological tests, MMSE, and CDR baseline scores
evidences the former in our data, and it may generally be
interpreted as that the more severe is the level of impairment
reached by a subject, the higher becomes the probability of its
progression until a conversion to ADwithin the following 3 years.
The use of such autocorrelated information as predictors may
have relevantly contributed in the high performance achieved by
our as well other algorithms which included them, compared to
others which did not (51, 52).

Moreover, the first principal component of the three ADAS
scores, which resulted in the most individually important
predictor, demonstrated a test AUROC significantly lower than
the one achieved by the entire algorithm. The results of our, as
well as other previous studies, had already showed that machine
learning algorithms can effectively be used to combine these
individual pieces of information, providing a better identification
of cAD amongMCI subjects than what it would be possible using
each of them singularly (14, 15, 20, 21, 47).

Our study has some limitations that should be taken into
account and that will be addressed in the future stages of our
research. First, even if we iteratively ensured that the subjects
used for testing were always recruited in different sites than those
used in the development of the algorithm, it is important to note
that all the ADNI recruiting sites were located in the USA or
Canada. Even if this can be considered an important step forward
toward the demonstration of the generalized performance of
the proposed algorithm, still these sites may not be completely
representative of the entire population of centers in which the
algorithm may aspire to be used. Our aim was to develop an
algorithm that may be applied also beyond US and Canada
centers only, and perhaps also clinical centers without any
research inclinations. MCI subjects referring to these extended
range of centers might have peculiar characteristics and the
algorithm might show reduced predictive accuracy when applied
to them. In order to at least partially address this potential
bias, we plan to first test and then re-optimize our algorithm
using further datasets coming from the several international
replications of the North American ADNI (https://www.alz.
org/research/for_researchers/partnerships/wwadni). In addition,
inclusion and exclusion criteria may have excluded from ADNI,
and in turn from our analyses, some MCI subjects with peculiar
characteristics, e.g., MCI subjects with high level of depression
or currently taking some of the medications that excluded for
admission to the study. Once again, the algorithm might show
reduced predictive accuracy when applied to them and further
testing in a less selected sample should be performed before a
safe use of the algorithm can be guaranteed with these peculiar
MCI subjects.

Furthermore, our final algorithm is based on an ensemble of
several lower-level machine learning algorithms, including some
that use the entire initial set of predictors as feature set. Thus,
all predictors currently remain necessary to be assessed, even if
some of them may contribute poorly or even not at all to the
prediction. Although the ensembling approach we usedmay have
effectively prevented that such irrelevant predictors decreased
the algorithm accuracy, a further reduction of the amount of
information necessary to be assessed and used by the algorithm
would permit to reduce the costs associated with its application.
At the same time, our algorithm may have missed to take into
account relevant pieces of information that can improve the
accuracy of its predictions.

It should be also noted that compensatory neurophysiological
mechanisms, including for instance cognitive reserve factors
such as bilingualism that are latent in MCI subjects, might
result in misclassifications of MCI converters and non-
converters (53, 54). It would be important to take this
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into account for predictive models, like ours, that exclusively
relies on quantitative psychological test scores to predict the
conversion to AD in MCI patients, as these compensatory brain
mechanisms might not be reflected during neuropsychological
testing and perhaps potentially impact the performance of
the algorithm.

Finally, our algorithm currently operates 3-year predictions
in subjects that already manifest MCI. As the new arriving
treatments are expected to be the more effective the earlier
they will be started, algorithms that can perform accurate
predictions at even earlier stages of deterioration than MCI,
and in a longer time frame, will be of particular relevance.
A preliminary attempt has already been done in our previous
study (20), employing also a sample of subjects with Pre-mild
Cognitive Impairment (55), as well as in other previous studies
which developed algorithm that aimed to make predictions
for period longer than 3 years (11, 15). Future steps in our
research will take into account this necessity, exploring the
opportunity of making predictions at longer time periods and in
earlier-stage subjects.

CONCLUSIONS

We developed an algorithm to predict 3-year conversion
to AD in MCI subjects, based on a weighted rank average
ensemble of several supervised machine learning algorithms.
It demonstrated high predictive accuracy when tested via
a sound train/test split protocol, exhibiting especially good
predictive performance when the algorithm was optimized
as a screening tool. Predictions are performed using only
a restricted set of sociodemographic characteristics, clinical
information, and neuropsychological test scores, which
makes its application of easy translation into clinical
practice, as well as useful in improving the recruitment
of MCI subjects at true risk of conversion to AD in
clinical trials.

It is important to conclude highlighting that any prediction,
including those provided by machine learning algorithms, is
probabilistic in its nature and always comes with a certain
degree of imprecision. The advantage of in the potential use
of algorithmic decision-making tools is that such imprecision
is defined by a known and objectively investigated degree of
confidence. However, in order to guarantee such confidence,
several and continuous tests of an algorithm have to be
performed before its application can be safely recommended.
Further tests and optimizations will follow this study in the
attempt to provide additional evidence of its accuracy in
generalized applications, and to improve its cost-effectiveness.
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